

Experiments with Edge Detection using One-dimensional
Surface Fitting

Gabor Terei, Jorge Luis Nunes e Silva Brito

The Ohio State University, Department of Geodetic Science and Surveying

1958 Neil Avenue, Columbus, Ohio 43210, USA

ABSTRACT

The approach of Nalwa and Binford for edge detection, using least squares surface

fitting and a tanh basis for step-edges is described in detail in their paper [1]. The
algorithm has been implemented, and tested for synthetic and aerial images. In this paper
we are dealing with aspects of the algorithm that emerged during the implementation, and
some aspects not, or only briefly mentioned in [1]. The algorithm is described shortly. We
considered the thresholds for the changes of the unknowns in the nonlinear adjustments,
as well as the maximum number of iterations allowed. We used the computed theoretical
standard deviations to propose realistic limits. Also, the sensitivity of the adjustment to
the initial values of the unknowns is discussed. Finally we present some results using the
algorithm.

INTRODUCTION

Edge detection is one of the first steps in any procedure that has the goal of image

understanding, due to the generally agreed upon fact that different objects are separated in
the real world by color and texture, which then appear in the image as different color and
texture, or different grey values, separated by edges. Indeed, two neighboring objects
cannot be differentiated (by humans or computers), if they have the same, or very similar
grey values. Thus the first step is to extract, or at least enhance the edges in the image.

An edge in an image is a discontinuity in the intensity (usually grey values) of the

image, where the intensities on both sides of the edge have relatively distinct properties.
These discontinuities can be mapped into three general categories based upon their
appearance. Probably the most common edges are step-edges, although line edges and
roof edges also appear in the images. One can also differentiate between physical edges
corresponding to abrupt changes in the surface normal and characteristics in object space,
and optical edges which correspond to abrupt changes in grey value, color, or texture in
the image. Unfortunately an optical edge does not always correspond to a physical edge,
and a physical edge does not always appear as an optical edge. During image processing,
such as edge detection, we can only detect optical edges, which would then need to be
further analyzed to relate them to a physical edge, making the linking of the edges an
important factor.

Most of the edge detection algorithms developed are based on one of two schemes.

One is the detection of local extremes of the gradient of the image, while the other relies
on the calculation of the Laplacian of the Gaussian, and subsequent detection of the zero-
crossings. Both schemes are discussed in more detail in textbooks on digital image

Figure 1. Step-edges, line-edges, and roof-edges. The first step-edge is an ideal edge,

 the second is ideal for this specific model.

Figure 2. One-dimensional surface Figure 3. The tanh function

processing [2], and computer vision [3], with several examples and development ideas.
The main problem associated with taking the derivatives is that they emphasize high
frequency noise, resulting in false edges.

The approach developed by Nalwa and Binford [1] is conceptually different from the

above. Their idea is to fit a series of one-dimensional surfaces to a grey value window
and accept the surface description that best approximates the local grey value function in
the least squares sense. A one-dimensional surface is a surface that is constrained to be
constant along a specific direction (Figure 2). Instead of searching for pixels that are
defined as edge pixels, this approach looks for edgels with an associated position and
direction. An extended edge in the image is approximated by short linear segments called
edgels, which are detected in the window. According to Nalwa and Binford, the algorithm
can take into account the blurring effect of the imaging system, produces effective noise
reduction without blurring the edges as severely as circularly symmetric operators (e.g.,
Gaussian) do, reduces the significance of thresholding, and requires only four parameters,
resulting in a smaller window size, thus a better resolution.

To test the algorithm for photogrammetric use, we implemented it and ran it with

synthetic and aerial imagery. In this paper we are dealing with aspects of the algorithm
that emerged during the implementation, providing test results, and elaborating on some
aspects not, or only briefly mentioned in [1].

DESCRIPTION OF THE ALGORITHM

The algorithm described by Nalwa and Binford deals only with step-edges, which are

the most dominant type, and this is the version we have implemented. The tanh function
(Figure 3) has been found as an adequate basis for step-edges, but combinations of the
tanh function produce adequate basis for line and roof edges as well. The adequacy of the
tanh function is described in detail in [1].

2 0 2
1

0

1

tanh()x

x

tanh()x e e
e e

x x

x x= −
+

−

−

Figure 4. The algorithm as developed by Nalwa and Binford

As with most edge detection algorithms, the scheme is to select a window of the

image, and perform analysis on that window to detect the presence of an edgel. A
flowchart of the algorithm is shown in Figure 4. First a plane is fit to the window in the
least squares sense. The aspect of this plane gives the first approximation for the direction
of variation in the window, and further one-dimensional surfaces are constrained using
this direction. The edgel (if detected) will be perpendicular to this direction. To refine this
estimate, a one-dimensional cubic surface is fit to the window. A one-dimensional cubic
surface is a surface constrained to be constant in one direction, and described by a cubic
function in the orthogonal direction. The edge direction resulting from the cubic fit is
used as the directional constraint for further surfaces. A 1-D tanh fit is then calculated in
the least squares sense, giving the position of the edgel. A useful byproduct of the tanh
surface is the edge contrast, or the step size, which is useful in linking and interpretation,
and can be compared to a threshold for eliminating small steps. In the governing
equation, ‘f’ is a scaling factor introduced by Nalwa and Binford to take care of the
blurring effect of the imaging system described by a Gaussian of σblur, as will be
discussed later. Finally to discriminate against smooth shading, and eliminate non-step-
edgels, a quadratic fit is performed, and the least squares error of the tanh, and the
quadratic fit are compared. If the quadratic fit (which is an unconstrained basis with the
same number of parameters as the tanh basis) describes the surface better, thus resulting
in a lower least squares error, the edgel is considered to be a non-step-edgel, and is
dropped.

EXPERIMENTATION

Implementation considerations

The observation equations for the planar and quadratic fits are linear, however, the

cubic and tanh least squares adjustments are nonlinear in one of their parameters. The
planar fit is performed to provide a reasonable initial value for the angle in the cubic fit
equations. However, Nalwa and Binford do not elaborate on what initial values should, or
could be used for the other parameters. By choosing good initial parameters, the number
of necessary iterations can be greatly reduced, thus speeding up this computationally
expensive algorithm, not to mention the sensitivity for convergence of some parameters
to the initial values.

image

window

planar fit cubic fit quadratic fit LSEquadratic < LSEtanh

Step-Edgel found

No Step-Edgel

tanh fit

type of
adjustment

observation equations unknowns comments

planar v a a x a y I x y= + ⋅ + ⋅ −() [,]0 1 2 a0, a1, a2 linear

cubic v a a z a z a z I x y= + ⋅ + ⋅ + ⋅ −() [,]0 1 2
2

3
3 a0, a1, a2, a3,

θ
non-linear in θ (z = z(θ))

tanh v s f z p k I x y= ⋅ ⋅ + + −(tanh([])) [,] s, p, k non-linear in p

quadratic v a a z a z I x y= + ⋅ + ⋅ −() [,]0 1 2
2 a0, a1, a2 linear

f
blur

=
0 85.
σ

Table 1. Recapitulation of the least squares adjustments involved in the algorithm

There are no problems with the planar fit, as it is a linear problem, and no initial values

for the unknowns are needed. The only consideration is to detect homogeneous windows,
where the angle is not defined. In this case, the whole process for the window can be
stopped, as there evidently are no edges in a homogeneous area. For the cubic fit the
equations are nonlinear in the angle, however, due to the initial estimate from the planar
fit, convergence requires only a few steps. The initial values for the other parameters of
the cubic function are once again arbitrary, and do not significantly affect the number of
iterations required. The most sensitive case is the tanh fit, where the equations to be
solved are nonlinear in ‘p’ (reflecting the position of the edgel), and the pull-in range is
fairly small. Furthermore, our experiments showed that the pull-in range for ‘p’ not only
depends on the initial value of ‘p’, but also on the good approximation of the parameters
‘s’ and ‘k’. If ‘s’ and ‘k’ do not reflect well the brightness and contrast of the step-edgel
prior to the adjustment, ‘p’ needs to be known to around a quarter of a pixel, in some
extreme cases even better. This is not acceptable, even though we know that the edgel has
to pass through the center pixel of the window. We must be able to calculate ‘p’ in a
range of ±0.5 to ±√2 / 2 pixels from the center of the window, depending on the angle of
the edgel. The problem could be solved by offsetting the initial value of ‘p’ by a certain
small amount and restarting the adjustment computations anew, if the least squares
solution does not converge. However, this would require even more computations in this
already computationally expensive algorithm. Instead, initial values for ‘s’ and ‘k’ should
be derived from the results of the cubic fit. In the general case, the one-dimensional cubic
surface fit to the window has a local maximum and local minimum in the window, which
can be calculated easily, and used as the approximation of the intensities on both sides of
the edgel. However, due to round-off errors, no real minimum and maximum may exist.
In this case, we simply used the largest and the smallest values in the window to
approximate ‘s’ and ‘k’. Basically, both approaches give sufficient approximation that the
pull-in range of ‘p’ is expanded to about 0.75 pixel, which is sufficient. The initial value
of ‘p’ is then set up in such a way, that the edgel would pass right through the center of
the window, using the direction found in the cubic fit. The last least squares adjustment,
the quadratic fit, is a linear problem, not requiring initial values and iterations.

Another consideration is when to stop the iterations: what should be the threshold for

the change in the parameters? To answer this question, we performed tests using several
windows extracted from real and synthetic images, calculated the accuracy figures for the
parameters from the adjustment, compared the “true” values (where they could be
determined) to the obtained values, and investigated if the accuracy estimates were
correct. For the cubic surface, the standard deviations of the parameters a0, a1, a2, and a3

z x y= ⋅ + ⋅cos sinθ θ

vary greatly, however, they are usually greater than one. Also, taking into consideration
that we are looking for local extremes in a window, where x and y are small values (range
from 0 to 4 in a 5x5 window), small changes in these parameters will not have a large
effect on these extremes, which we will only be using as initial values for the tanh fit
anyway. Thus a good rule of thumb is to stop the iterations once the change in the
parameters becomes smaller than one. For the threshold on the change in the angle, our
experiments show that the standard deviation indicates an accuracy lower than one
degree, however the “real” values usually differ from the calculated values by more than a
degree. This is mainly due to the quantization error, introduced by calculating a
continuous function from discrete values, and we can accept Nalwa and Binford’s
suggestion to round the angle to the nearest 5o. However, not rounding the angle has very
little effect on the results of the tanh, and quadratic fits. This then means that we can stop
the iteration once the change in the angle is less than 2.5o. Using these thresholds, usually
two iterations are sufficient.

As expected, in the case of the tanh fit, the accuracy figures depend largely on the step

size, and the blurring of the step-edge. Figure 5 shows the edgels used for testing. We
have used ideal step-edges, blurred step-edges, and extracted different quality edges from
an aerial image for this purpose. Table 2 summarizes the results obtained during the least
squares adjustment. Note that the positional accuracy turned out to be better then 0.1
pixels in all cases, except for a small step size edgel. In all cases, the comparison of the
“true” values to the calculated values proves that the accuracy estimates are correct. The
“true” values cannot be calculated for the edgels extracted from the aerial image,
however, visual analysis shows that the results reflect the reality. Accuracy figures once
again depended on the step size, as well as the clarity of the edgel. Taking these results
into consideration, we suggest to use the accuracy figures from the least squares
adjustment to determine the thresholds for stopping the iterations. We calculated the
standard deviations of the parameters, and stopped the iteration if the changes in all of the
parameters were below one half of their corresponding standard deviation. If the standard
deviations for ‘k’ and ‘s’ are below 0.5 (grey values), and below 0.1 (pixels) for ‘p’, we
also stop the iterations, since realistically no better results can be achieved. Using these
guidelines, usually only a few iterations were needed.

a b c

d e f g

Figure 5. Edgels used for testing (a., ideal step-edge, b., ideal step-edge for the model,
c., corner (no edgel), d., e., strong edges, f., well visible edge, g., just visible edge)

0 1 43 213 255
0 1 43 213 255
0 1 43 213 255
0 1 43 213 255
0 1 43 213 255

0 0 0 0 0
0 0 0 0 255
0 0 0 255 255
0 0 255 255 255
0 0 0 0 0

0 0 0 255 255
0 0 0 255 255
0 0 0 255 255
0 0 0 255 255
0 0 0 255 255

174 162 118 72 75
172 165 112 69 71
170 158 104 68 71
168 160 94 66 72
172 158 87 68 70

241 244 244 242 246
137 198 244 246 245
97 125 153 207 244
66 77 102 146 155
63 71 81 111 137

117 144 211 211 216
101 117 192 192 217
116 110 176 176 218
118 101 125 125 214
113 99 107 149 202

180 181 172 181 182
180 184 181 193 191
187 187 178 180 176
176 184 195 190 201
205 203 198 189 196

edgel
code

of
iter.

kcalc scalc pcalc σk σs σp ktrue strue ptrue

id255 10 136.2 146.5 2.6 8.8 7.5 0.1 127.5 127.5 2.5
id128 10 59.7 74.5 2.4 4.4 3.8 0.1 64 64 2.5
id5 10 2.3 2.9 2.4 0.2 0.1 0.1 2.5 2.5 2.5
bl255 3 129.7 132.0 2.5 1.1 1.0 0.1 127.5 127.5 2.5
bl128 3 64.8 66.4 2.5 0.5 0.4 0.0 64 64 2.5
bl5 3 2.5 2.5 2.5 0.0 0.0 0.0 2.5 2.5 2.5
strong 2 165.6 81.7 0.7 4.2 3.7 0.1 - - -
good 4 120.2 51.8 1.9 0.9 0.8 0.0 - - -
med 2 162.1 56.23 1.1 2.2 2.0 0.1 - - -
poor 3 190.8 8.8 3.1 2.3 2.2 0.3 - - -

 Table 2. Results and accuracy figures from the tanh fit. Edgel codes:
idnnn represents the ideal edge shown in figure 5a, nnn being the higher values,
blnnn represents the blurred edge shown in figure 5b, nnn being the higher values,
strong, good, med, and poor are the windows extracted from the aerial image, shown
in figure 5d-g.

In some cases, where the tanh model does not reflect the values in the window at all

(e.g., Figure 5.c), the least squares adjustment will provide very slow convergence, or the
parameters will oscillate around some value. Such a case slows down the edge detection
process, and raises the question: how many iterations should be allowed? Oscillation, or
slow convergence proves that the model does not fit the image well, and the window does
not contain a step-edgel. Considering the results obtained from our tests, we have decided
to limit the maximum number of iterations to 10, which was the maximum number of
iterations (below 100) that were needed to reach convergence in any of our tests using the
previously discussed thresholds.

Test images and experiments

To test the overall behavior of the algorithm, we have used a synthetic and an aerial

image (Figure 6). The synthetic image was 256 by 256 pixels, while the aerial image was
512 by 512 pixels, both being 8 bit images. Table 3 summarizes the experiments
performed. To test the smoothing effect of the algorithm, a version of the synthetic image
with added noise was also used. As mentioned in the introduction and the presentation of
the algorithm, to take the blurring effect of the imaging system into account, the scaling
factor ‘f’ is introduced in the tanh equation, which depends on the standard deviation of
the effective blurring Gaussian during image acquisition. This blurring effect can be
attributed to several factors, mainly atmospheric conditions, lens effects and motion blur,
which cannot be determined exactly. Nalwa and Binford describe why this scaling factor
is used in [1]. To test the effectiveness of the model, we also created a version of the
noiseless synthetic image, blurred with a Gaussian of known σ, and ran the algorithm
using different values for σblur. We also used different window sizes for the edge
detection, from which we expected a better smoothing effect, especially on the noisy and
the aerial image. However, there is a limit, defined by the image content, on the
maximum window size, as the assumption of edgels being linear segments breaks down
with large window sizes. The smallest window size, as explained in [1] is 5 by 5 pixels,
which was used in most cases.

Image used window
sizes

σblur

synthetic without noise 5, 9 0.1, 0.5, 0.6, 0.7, 1.0, 1.2, 1.3, 1.4
synthetic with noise 5, 9 0.1, 0.6
synthetic blurred with σblur = 0.6 5 0.1, 0.5, 0.6, 0.7, 1.0, 1.2, 1.3, 1.4
aerial 5, 9, 15 0.4, 0.6, 0.8, 1.0

 Table 3. Experiments performed on the test images

Results

The results of our test are shown in Figure 7. We can observe that the synthetic image

was processed perfectly, and the results with the noisy synthetic image, as well as the
results with the aerial image are satisfactory. Figure 7b shows the output generated from
the noisy synthetic image. Here, the value of the grey level output corresponds to the
calculated step size. The images shown in Figure 7 have been inverted for better
representation, thus darker points correspond to larger step sizes. We can see that most of
the noise appears as small step sizes, and can be eliminated by choosing an appropriate
threshold. The threshold can either be determined interactively, or using statistical values
based on the whole output image. By using a larger window size (figure 7c, binary
output), the smoothing effect of the surface fitting is larger, however the corners are cut
off more and more as we increase the window size. This effect is even worse in the aerial

Figure 6. The test images. The noisy version of the synthetic image was produced by

 adding 10% random noise to the image.

image, where sharp curves are not detected any more. The step-edges in the aerial image
are detected very well, and the grey level output (figure 7d) shows that most of the texture
and noise is smoothed out, or appears as very small step size edgels.

Other results not shown here prove that the effect of the blurring Gaussian is fairly low on
the resulting output. In fact, changing the value of σblur in the image, or the algorithm by
0.1 results in changes of the decisive parameters that are less than the accuracy of these
parameters. For real (aerial) images, any value for σblur between 0.4 and 1.0 gives good,
basically indistinguishable results. For the synthetic image, using a σblur of 0 would be
ideal, however that would result in division by 0. Using 0.1 gives perfect results, the only
difference from the previous being in the accuracy of the step size calculation. Visible
degradation occurred only with a σblur larger than 1.4, where the edges became shifted by
a pixel. For the synthetic image, blurred with the Gaussian prior to edge detection, the
step sizes of the edges are calculated correctly (within 2 grey values), proving that the
tanh function is a good basis for ideally blurred step-edges.

 a., b., c.,

 d., e.,

Figure 7. a., default output (synthetic image without noise), b., output as grey values
 (noisy synthetic image), c., window size 9 x 9 (noisy synthetic image),

 d., default output from the aerial image, e., grey level output of the aerial image

CONCLUSIONS

The overall performance of the algorithm is very satisfactory, and the only major

drawback is its slow speed, due to the computational intensity of the task. With careful
programming considerations, this speed can probably be increased, but it will still be
about a magnitude slower than most other edge detection algorithms. The algorithm,
however, carries many advantages, which makes it a considerable choice if speed is not of
primary concern. The fact that it provides directional and contrast information is valuable
for linking and interpretation. The accuracy figures obtained from the least squares
adjustment can also be used for linking. For example, the standard deviation of the step
size gives important information about the “quality” of the edge, and can be used for
determining a threshold when linking an adjacent edgel. Sub-pixel accuracy is reached in
the position, generally around 0.1 pixels. Another advantage is that there is no implicit
thresholding in the algorithm itself, only the one associated with the step size, which is
performed after the computations are done.

ACKNOWLEDGMENT

We would like to thank Dr. Christian Heipke for sacrificing his time to help us answer

many of our questions, and for his support in the realization and publication of this paper.

REFERENCES

[1] Nalwa, V.S. and Binford, T.O., 1986. On Detecting Edges, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. PAMI-8. No. 6, pp. 699 - 714.

[2] Gonzalez, R.C. and Woods, R.E., 1992. Digital Image Processing, Addison-Wesley
Publishing Co. Inc.

[3] Haralick, R.M. and Shapiro, L.G., 1992. Computer and Robot Vision, Addison-
Wesley Publishing Co. Inc.

