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ABSTRACT 
 
The approach of Nalwa and Binford for edge detection, using least squares surface 

fitting and a tanh basis for step-edges is described in detail in their paper [1]. The 
algorithm has been implemented, and tested for synthetic and aerial images. In this paper 
we are dealing with aspects of the algorithm that emerged during the implementation, and 
some aspects not, or only briefly mentioned in [1]. The algorithm is described shortly. We 
considered the thresholds for the changes of the unknowns in the nonlinear adjustments, 
as well as the maximum number of iterations allowed. We used the computed theoretical 
standard deviations to propose realistic limits. Also, the sensitivity of the adjustment to 
the initial values of the unknowns is discussed. Finally we present some results using the 
algorithm. 

 
INTRODUCTION 

 
Edge detection is one of the first steps in any procedure that has the goal of image 

understanding, due to the generally agreed upon fact that different objects are separated in 
the real world by color and texture, which then appear in the image as different color and 
texture, or different grey values, separated by edges. Indeed, two neighboring objects 
cannot be differentiated (by humans or computers), if they have the same, or very similar 
grey values. Thus the first step is to extract, or at least enhance the edges in the image. 

 
An edge in an image is a discontinuity in the intensity (usually grey values) of the 

image, where the intensities on both sides of the edge have relatively distinct properties. 
These discontinuities can be mapped into three general categories based upon their 
appearance. Probably the most common edges are step-edges, although line edges and 
roof edges also appear in the images. One can also differentiate between physical edges 
corresponding to abrupt changes in the surface normal and characteristics in object space, 
and optical edges which correspond to abrupt changes in grey value, color, or texture in 
the image. Unfortunately an optical edge does not always correspond to a physical edge, 
and a physical edge does not always appear as an optical edge. During image processing, 
such as edge detection, we can only detect optical edges, which would then need to be 
further analyzed to relate them to a physical edge, making the linking of the edges an 
important factor. 

 
Most of the edge detection algorithms developed are based on one of two schemes. 

One is the detection of local extremes of the gradient of the image, while the other relies 
on the calculation of the Laplacian of the Gaussian, and subsequent detection of the zero-
crossings.  Both schemes  are  discussed  in  more  detail  in  textbooks  on  digital  image 

 



  

 
 
 
 
 
Figure 1.  Step-edges, line-edges, and roof-edges. The first step-edge is an ideal edge,  

  the second is ideal for  this specific model. 
 
 
 

       
 
Figure 2.  One-dimensional surface  Figure 3.  The tanh function 
 
 
 

processing [2], and computer vision [3], with several examples and development ideas. 
The main problem associated with taking the derivatives is that they emphasize high 
frequency noise, resulting in false edges. 

 
The approach developed by Nalwa and Binford [1] is conceptually different from the 

above. Their idea is to fit a series of one-dimensional surfaces to a grey value window 
and accept the surface description that best approximates the local grey value function in 
the least squares sense. A one-dimensional surface is a surface that is constrained to be 
constant along a specific direction (Figure 2). Instead of searching for pixels that are 
defined as edge pixels, this approach looks for edgels with an associated position and 
direction. An extended edge in the image is approximated by short linear segments called 
edgels, which are detected in the window. According to Nalwa and Binford, the algorithm 
can take into account the blurring effect of the imaging system, produces effective noise 
reduction without blurring the edges as severely as circularly symmetric operators (e.g., 
Gaussian) do, reduces the significance of thresholding, and requires only four parameters, 
resulting in a smaller window size, thus a better resolution. 

 
To test the algorithm for photogrammetric use, we implemented it and ran it with 

synthetic and aerial imagery. In this paper we are dealing with aspects of the algorithm 
that emerged during the implementation, providing test results, and elaborating on some 
aspects not, or only briefly mentioned in [1]. 

 
DESCRIPTION OF THE ALGORITHM 

 
The algorithm described by Nalwa and Binford deals only with step-edges, which are 

the most dominant type, and this is the version we have implemented. The tanh function 
(Figure 3) has been found as an adequate basis for step-edges, but combinations of the 
tanh function produce adequate basis for line and roof edges as well. The adequacy of the 
tanh function is described in detail in [1]. 
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Figure 4.   The algorithm as developed by Nalwa and Binford 
 
 
 
 
As with most edge detection algorithms, the scheme is to select a window of the 

image, and perform analysis on that window to detect the presence of an edgel. A 
flowchart of the algorithm is shown in Figure 4. First a plane is fit to the window in the 
least squares sense. The aspect of this plane gives the first approximation for the direction 
of variation in the window, and further one-dimensional surfaces are constrained using 
this direction. The edgel (if detected) will be perpendicular to this direction. To refine this 
estimate, a one-dimensional cubic surface is fit to the window. A one-dimensional cubic 
surface is a surface constrained to be constant in one direction, and described by a cubic 
function in the orthogonal direction. The edge direction resulting  from  the  cubic  fit  is  
used as the directional constraint for further surfaces. A 1-D tanh fit is then calculated in 
the least squares sense, giving the position of the edgel. A useful byproduct of the tanh 
surface is the edge contrast, or the step size, which is useful in linking and interpretation, 
and can be compared to a threshold for eliminating small steps. In the governing 
equation, ‘f’ is a scaling factor introduced by Nalwa and Binford to take care of the 
blurring effect of the imaging system described by a Gaussian of σblur, as will be 
discussed later. Finally to discriminate against smooth shading, and eliminate non-step-
edgels, a quadratic fit is performed, and the least squares error of the tanh, and the 
quadratic fit are compared. If the quadratic fit (which is an unconstrained basis with the 
same number of parameters as the tanh basis) describes the surface better, thus resulting 
in a lower least squares error, the edgel is considered to be a non-step-edgel, and is 
dropped. 
 

EXPERIMENTATION 
 
Implementation considerations 
 
The observation equations for the planar and quadratic fits are linear, however, the 

cubic and tanh least squares adjustments are nonlinear in one of their parameters. The 
planar fit is performed to provide a reasonable initial value for the angle in the cubic fit 
equations. However, Nalwa and Binford do not elaborate on what initial values should, or 
could be used for the other parameters. By choosing good initial parameters, the number 
of necessary iterations can be greatly reduced, thus speeding up this computationally 
expensive algorithm, not to mention the sensitivity for convergence of some parameters 
to the initial values. 
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type of 
adjustment 

observation equations unknowns comments 

planar v a a x a y I x y= + ⋅ + ⋅ −( ) [ , ]0 1 2  a0, a1, a2 linear 

cubic v a a z a z a z I x y= + ⋅ + ⋅ + ⋅ −( ) [ , ]0 1 2
2

3
3  a0, a1, a2, a3, 

θ 
non-linear in θ (z = z(θ)) 

tanh v s f z p k I x y= ⋅ ⋅ + + −( tanh( [ ]) ) [ , ]  s, p, k non-linear in p 

quadratic v a a z a z I x y= + ⋅ + ⋅ −( ) [ , ]0 1 2
2  a0, a1, a2 linear 

f
blur

=
0 85.
σ

    
 

Table 1. Recapitulation of the least squares adjustments involved in the algorithm 
 
 
There are no problems with the planar fit, as it is a linear problem, and no initial values 

for the unknowns are needed. The only consideration is to detect homogeneous windows, 
where the angle is not defined. In this case, the whole process for the window can be 
stopped, as there evidently are no edges in a homogeneous area. For the cubic fit the 
equations are nonlinear in the angle, however, due to the initial estimate from the planar 
fit, convergence requires only a few steps. The initial values for the other parameters of 
the cubic function are once again arbitrary, and do not significantly affect the number of 
iterations required. The most sensitive case is the tanh fit, where the equations to be 
solved are nonlinear in ‘p’ (reflecting the position of the edgel), and the pull-in range is 
fairly small. Furthermore, our experiments showed that the pull-in range for ‘p’ not only 
depends on the initial value of ‘p’, but also on the good approximation of the parameters 
‘s’ and ‘k’. If ‘s’ and ‘k’ do not reflect well the brightness and contrast of the step-edgel 
prior to the adjustment, ‘p’ needs to be known to around a quarter of a pixel, in some 
extreme cases even better. This is not acceptable, even though we know that the edgel has 
to pass through the center pixel of the window. We must be able to calculate ‘p’ in a 
range of ±0.5 to  ±√2 / 2 pixels from the center of the window, depending on the angle of 
the edgel. The problem could be solved by offsetting the initial value of ‘p’ by a certain 
small amount and restarting the adjustment computations anew, if the least squares 
solution does not converge. However, this would require even more computations in this 
already computationally expensive algorithm. Instead, initial values for ‘s’ and ‘k’ should 
be derived from the results of the cubic fit. In the general case, the one-dimensional cubic 
surface fit to the window has a local maximum and local minimum in the window, which 
can be calculated easily, and used as the approximation of the intensities on both sides of 
the edgel. However, due to round-off errors, no real minimum and maximum may exist. 
In this case, we simply used the largest and the smallest values in the window to 
approximate ‘s’ and ‘k’. Basically, both approaches give sufficient approximation that the 
pull-in range of ‘p’ is expanded to about 0.75 pixel, which is sufficient. The initial value 
of ‘p’ is then set up in such a way, that the edgel would pass right through the center of 
the window, using the direction found in the cubic fit. The last least squares adjustment, 
the quadratic fit, is a linear problem, not requiring initial values and iterations. 

 
Another consideration is when to stop the iterations: what should be the threshold for 

the change in the parameters? To answer this question, we performed tests using several 
windows extracted from real and synthetic images, calculated the accuracy figures for the 
parameters from the adjustment, compared the “true” values (where they could be 
determined) to the obtained values, and investigated if the accuracy estimates were 
correct. For the cubic surface, the standard deviations of the parameters a0, a1, a2, and a3 

z x y= ⋅ + ⋅cos sinθ θ  



  

vary greatly, however, they are usually greater than one. Also, taking into consideration 
that we are looking for local extremes in a window, where x and y are small values (range 
from 0 to 4 in a 5x5 window), small changes in these parameters will not have a large 
effect on these extremes, which we will only be using as initial values for the tanh fit 
anyway. Thus a good rule of thumb is to stop the iterations once the change in the 
parameters becomes smaller than one. For the threshold on the change in the angle, our 
experiments show that the standard deviation indicates an accuracy lower than one 
degree, however the “real” values usually differ from the calculated values by more than a 
degree. This is mainly due to the quantization error, introduced by calculating a 
continuous function from discrete values, and we can accept Nalwa and Binford’s 
suggestion to round the angle to the nearest 5o. However, not rounding the angle has very 
little effect on the results of the tanh, and quadratic fits. This then means that we can stop 
the iteration once the change in the angle is less than 2.5o. Using these thresholds, usually 
two iterations are sufficient. 

 
As expected, in the case of the tanh fit, the accuracy figures depend largely on the step 

size, and the blurring of the step-edge. Figure 5 shows the edgels used for testing. We 
have used ideal step-edges, blurred step-edges, and extracted different quality edges from 
an aerial image for this purpose. Table 2 summarizes the results obtained during the least 
squares adjustment. Note that the positional accuracy turned out to be better then 0.1 
pixels in all cases, except for a small step size edgel. In all cases, the comparison of the 
“true” values to the calculated values proves that the accuracy estimates are correct. The 
“true” values cannot be calculated for the edgels extracted from the aerial image, 
however, visual analysis shows that the results reflect the reality. Accuracy figures once 
again depended on the step size, as well as the clarity of the edgel. Taking these results 
into consideration, we suggest to use the accuracy figures from the least squares 
adjustment to determine the thresholds for stopping the iterations. We calculated the 
standard deviations of the parameters, and stopped the iteration if the changes in all of the 
parameters were below one half of their corresponding standard deviation. If the standard 
deviations for ‘k’ and ‘s’ are below 0.5 (grey values), and below 0.1 (pixels) for ‘p’, we 
also stop the iterations, since realistically no better results can be achieved. Using these 
guidelines, usually only a few iterations were needed. 
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Figure 5.  Edgels used for testing (a., ideal step-edge,  b., ideal step-edge for the model, 
c., corner (no edgel), d., e., strong edges,  f., well visible edge,  g., just visible edge) 
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edgel 
code 

# of 
iter. 

kcalc scalc pcalc σk σs σp ktrue strue ptrue 

id255 10 136.2 146.5 2.6 8.8 7.5 0.1 127.5 127.5 2.5 
id128 10 59.7 74.5 2.4 4.4 3.8 0.1 64 64 2.5 
id5 10 2.3 2.9 2.4 0.2 0.1 0.1 2.5 2.5 2.5 
bl255 3 129.7 132.0 2.5 1.1 1.0 0.1 127.5 127.5 2.5 
bl128 3 64.8 66.4 2.5 0.5 0.4 0.0 64 64 2.5 
bl5 3 2.5 2.5 2.5 0.0 0.0 0.0 2.5 2.5 2.5 
strong 2 165.6 81.7 0.7 4.2 3.7 0.1 - - - 
good 4 120.2 51.8 1.9 0.9 0.8 0.0 - - - 
med 2 162.1 56.23 1.1 2.2 2.0 0.1 - - - 
poor 3 190.8 8.8 3.1 2.3 2.2 0.3 - - - 

 
 Table 2. Results and accuracy figures from the tanh fit. Edgel codes: 
idnnn  represents the ideal edge shown in figure 5a,   nnn being the higher values, 
blnnn  represents the blurred edge shown in figure 5b,  nnn being the higher values, 
strong, good, med, and poor are the windows extracted from the aerial image, shown  
in figure 5d-g. 
 
In some cases, where the tanh model does not reflect the values in the window at all 

(e.g., Figure 5.c), the least squares adjustment will provide very slow convergence, or the 
parameters will oscillate around some value. Such a case slows down the edge detection 
process, and raises the question: how many iterations should be allowed? Oscillation, or 
slow convergence proves that the model does not fit the image well, and the window does 
not contain a step-edgel. Considering the results obtained from our tests, we have decided 
to limit the maximum number of iterations to 10, which was the maximum number of 
iterations (below 100) that were needed to reach convergence in any of our tests using the 
previously discussed thresholds. 

 
Test images and experiments 
 
To test the overall behavior of the algorithm, we have used a synthetic and an aerial 

image (Figure 6). The synthetic image was 256 by 256 pixels, while the aerial image was 
512 by 512 pixels, both being 8 bit images. Table 3 summarizes the experiments 
performed. To test the smoothing effect of the algorithm, a version of the synthetic image 
with added noise was also used. As mentioned in the introduction and the presentation of 
the algorithm, to take the blurring effect of the imaging system into account, the scaling 
factor ‘f’ is introduced in the tanh equation, which depends on the standard deviation of 
the effective blurring Gaussian during image acquisition. This blurring effect can be 
attributed to several factors, mainly atmospheric conditions, lens effects and motion blur, 
which cannot be determined exactly. Nalwa and Binford describe why this scaling factor 
is used in [1]. To test the effectiveness of the model, we also created a version of the 
noiseless synthetic image, blurred with a Gaussian of known σ, and ran the algorithm 
using different values for σblur. We also used different window sizes for the edge 
detection, from which we expected a better smoothing effect, especially on the noisy and 
the aerial image. However, there is a limit, defined by the image content, on the 
maximum window size, as the assumption of edgels being linear segments breaks down 
with large window sizes. The smallest window size, as explained in [1] is 5 by 5 pixels, 
which was used in most cases. 



  

Image used window 
sizes 

σblur 

synthetic without noise    5, 9 0.1, 0.5, 0.6, 0.7, 1.0, 1.2, 1.3, 1.4 
synthetic with noise    5, 9 0.1, 0.6 
synthetic blurred with σblur = 0.6    5 0.1, 0.5, 0.6, 0.7, 1.0, 1.2, 1.3, 1.4 
aerial    5, 9, 15 0.4, 0.6, 0.8, 1.0 
 
 Table 3.  Experiments performed on the test images 
 
 
Results 
 
The results of our test are shown in Figure 7. We can observe that the synthetic image 

was processed perfectly, and the results with the noisy synthetic image, as well as the 
results with the aerial image are satisfactory. Figure 7b shows the output generated from 
the noisy synthetic image. Here, the value of the grey level output corresponds to the 
calculated step size. The images shown in Figure 7 have been inverted for better 
representation, thus darker points correspond to larger step sizes. We can see that most of 
the noise appears as small step sizes, and can be eliminated by choosing an appropriate 
threshold. The threshold can either be determined interactively, or using statistical values 
based on the whole output image. By using a larger window size (figure 7c, binary 
output), the smoothing effect of the surface fitting is larger, however the corners are cut 
off more and more as we increase the window size. This effect is even worse in the aerial 

 
 

 

 
 
Figure 6.   The test images. The noisy version of the synthetic image was produced by  

  adding 10% random noise to the image. 
 

 

 



  

 
image, where sharp curves are not detected any more. The step-edges in the aerial image 
are detected very well, and the grey level output (figure 7d) shows that most of the texture 
and noise is smoothed out, or appears as very small step size edgels. 

 
Other results not shown here prove that the effect of the blurring Gaussian is fairly low on 
the resulting output. In fact, changing the value of σblur in the image, or the algorithm by 
0.1 results in changes of the decisive parameters that are less than the accuracy of these 
parameters. For real (aerial) images, any value for σblur between 0.4 and 1.0 gives good, 
basically indistinguishable results. For the synthetic image, using a σblur of 0 would be 
ideal, however that would result in division by 0. Using 0.1 gives perfect results, the only 
difference from the previous being in the accuracy of the step size calculation. Visible 
degradation occurred only with a σblur larger than 1.4, where the edges became shifted by 
a pixel. For the synthetic image, blurred with the Gaussian prior to edge detection, the 
step sizes of the edges are calculated correctly (within 2 grey values), proving that the 
tanh function is a good basis for ideally blurred step-edges. 
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Figure 7.  a., default output (synthetic image without noise),  b., output as grey values  
 (noisy  synthetic  image),   c., window  size  9 x 9   (noisy  synthetic  image), 

 d., default output from the aerial image,  e., grey level output of the aerial image 
 

  

 



  

CONCLUSIONS 
 
The overall performance of the algorithm is very satisfactory, and the only major 

drawback is its slow speed, due to the computational intensity of the task. With careful 
programming considerations, this speed can probably be increased, but it will still be 
about a magnitude slower than most other edge detection algorithms. The algorithm, 
however, carries many advantages, which makes it a considerable choice if speed is not of 
primary concern. The fact that it provides directional and contrast information is valuable 
for linking and interpretation. The accuracy figures obtained from the least squares 
adjustment can also be used for linking. For example, the standard deviation of the step 
size gives important information about the “quality” of the edge, and can be used for 
determining a threshold when linking an adjacent edgel. Sub-pixel accuracy is reached in 
the position, generally around 0.1 pixels. Another advantage is that there is no implicit 
thresholding in the algorithm itself, only the one associated with the step size, which is 
performed after the computations are done. 
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